_AD-R162 661 SIHULRTIONS AMONG MULTIDINENSIONAL ITERATIVE ARRAYS

: ITERATIVE TREE AUTOMA (U) ILLINOIS UNIV RT URBANA
COORDINATED SCIENCE LAB TRAHAN JAN 8

UNCLASSIFIED UILU-ENG-86-2282 F/6 12/1

Fuuen

T P » , |
R S T,

o

[l

I

EEEEEE

=
-

A
35 L & B ,,
. "

-
-

s s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

,.. k. IR) \'’ W ‘751‘-7 ,-_,: ke
AR, Ui W) PN E A B, A N Rigls

s N :'. “”" .“"WM ‘% %; ’{-f-'-"‘“:: .1-""‘&'*'\-"‘ -:.J":- '*"‘ : o \')"{F"'\-

‘,. » . o ¢ 4

ety ,ﬂ-ﬂ',(.'r, ,\"’_F\ o~ <.

g
D {:ﬁm&.: iﬂ‘*it&; & :‘??"3‘% - T ISR

e
:; R
7 ,:.'

”
UROLY

&
P

;’: e T i ' _ »
il s : ‘
“ﬁ ~ January 1986 ! UILU-ENG-86-2202 @

ACT-66

. COORDINATED SCIENCE LABORATORY
College of Engineering '

= En O O O
AD-A162 661

SIMULATIONS AMONG MULTI-

DIMENSIONAL ITERATIVE ARRAYS,
ITERATIVE TREE AUTOMATA, AND
ALTERNATING TURING MACHINES

Jerry Lee Trahan

-

OTIC FILE COPY

e it

vy

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

W AT T T

Approved for Public Release. Distribution Unlimited.

§ 85 12 27 028

. A A - A
e AL ” 0 IR, DRV s AL N ALERALALRLACALALSENEY
OXNATMIPEN R IRy SRS IS vah Wi Eely bl

rwmwmmmmmmmmmmr [20 S Sl S S A
- .

.y Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

ADA 1CQ L/

REPORT DOCUMENTATION PAGE

>

{3 1s. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTAICTIVE MARKINGS
None

2. SECUAITY CLASSIFICATION AUTHORITY

|l N/A
N2, OECLASSIFICATION/DOWNGRADING SCHEDULE

3. OISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release, distribution

unlimited. :
N/A
t}‘ 4. PEREOAMING ORGANIZATION REPOART NUMBEA(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
O UILU-ENG-86-2202 (ACT-66) N/A

Coordinated Science Laboratory
University of Illinois

(1f applicadie)
N/A

3 .’
1]

7s. NAME OF MONITORING ORGANIZATION

Office of Naval Research

6c. ADDRESS (City. State ana ZIP Coda)

t-§ 1101 W. Springfield Avenue
\<R Urbana, Illinois 61801

75. ADDAESS (City. State and ZIP Codsi

800 N. Quincy Street
Arlington, VA 22217

o« da. NAME OF FUNDING/SPONSORING
e OAGANIZATION
s

Office of Naval Research

(11 applicebie)

85. OFFICE SYMSOL
N/A

9. PROCUREMENT INSTRUMENT IODENTIFICATION NUMBER

Contract # N0O001l4-85-K-0570

|

E 8c. ADCRESS (City, State and ZIP Coae)
"

800 N. Quincy Street
Arlington, VA 22217

10. SOURCE OF BUNDING NOS.

m id

4 4
t7iR 1. TITLR (Inciude Security Clamification)Simulations among

sional erative arrays, jterative

PROGAAM PROJECT
ELEMENT NO. NO.
N/A N/A

TASK
NO.

N/A

NO.

N/A

WORK URIT l

12. PEASONAL AUTHOR(S)

Trahan, Jerry L.

‘/i 13a. TYPE OF REPORT

13b. TIME COVERED

14. OATE QF REPOAT (Yr., Mo., Dey)

1S. PAGE COUNT

|

£1€L0 | GAOUP | SU8. GA.
i
|

I

e

computation, simulation, computational complg_}iity theory.
StroesTs

echnical FAOM TO 1936 Januaryv 42
E’ <8. SUPPLEMENTARY NOTATION
’ N/A R
17. COSATI CODES 1’. SUB. :JT TEAMS Contnue on reverse i/ necessery snd identify by block number:
—4terative array, alternting turing machine, parallel

Yu (1984
o((mma*l

g9, A!STHACT {Continue on reverse if necessary and iden tify dy diock number,

"-~We present three simulations: a simulation of an alternating Turing machine (ATM)
operating in time T(n) by an iterative tree automation (ITA)
of a d—démensicmal iterative array (dIA) operating in time T(n) by an AT
-0({T{a))}x>, and a simulation of an ITA operating in time T(n) by an ATM,inm—time
0€€E(n))}) The first two improve previously known results.
simulation of a nondeterministic Turing machine by an ITA in time O(T(n)) of Culik and
The second is stronger than the simulation of a dIA by an ATM in ti

“/logT(n)) of Seiferas (1977) and Dymond and Tompa (1985). "f,

2

s
/

The first implies the

e Al

Wimulation

20. SISTAISUTICON/AVAILABILITY CF ABSTRACT

suncrassisieo/unumTed L same as apr. Z omic useas O

Unclassified

21. ABSTRACT SESURITY SLASSIFICATION

5

DD FORM 1473, 33 APR

R K
V3%

L]
o«
" 22a NAME SF RESPONSIBLE INCIVIDUAL

e TwlTe e

. T A T L T RN A e e e e O T T Y, S A e T
{‘ﬂ,{,.ﬂ-." ‘.{",:\‘ 'C’)'\‘ hic'(' l)fn,*q'{u'h_'.-' \..o‘ IOV !“-.‘\" .,'u \." ~.IQ“"J ('_~J'.,,'-" X

Ay ™

22b. TELIPWONE NUMBER

ECITICN OF * JAN 7315 983CL3TE.

{nciuae Ares Code;

Unclassified

22¢. QFFICE SYMSOL

NONE

By - -

R e O

) Srmet et

Pl |

—
..

SR P

v

- *
S o

L= 2 DR

N CLPLI

i S R

v At

NV AR ek s i“ "r

SECURITY CLASSIFICATION OF THIS PAGE

11.

tree automata, and alternating turing machines

e Ml o B ST B TS Bew o2l Sor SR v

==

£

Py

"

P R R I TaRe ATttt . A e . .‘... WYt ‘.:\ _.‘,: e
E};‘"f'«}:«.ﬂ'}; }:‘Iij'xl'}:hu:'\ﬂu ‘\’L.‘L..-c:l';.._. R, :: .;Lx.x:.f .U1}:u ..L ol ':':"F.‘\L(‘ k.s-f':-_l }'Y‘,L‘.z_’.r e, .\t‘.-_: ."AA\EJ\P i"-l'x.z 3

SIMULATIONS AMONG MULTIDIMENSIONAL ITERATIVE ARRAYS.
ITERATIVE TREE AUTOMATA,
AND ALTERNATING TURING MACHINES

BY
JERRY LEE TRAHAN

B.S.. Louisiana State University and A. & M. College. 1983

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
Cniversity of Illinois at Urbana-Champaign. 1986

Accession For

rrs GRA&T
CLTe TaR

U mennend 0O

Juctiviestione

i

} Fy
Urbana. [llinois ‘_’Dj_sr,rj‘.-:,-r,ﬁ o/

e

Availarility Codes

Avail and/or
Dist Special

AL

T

. - -
AT g

TrOT R TR T TR T TR B am tal g Gk b if el tateab eal teb b b atial bl b L LS QAL RSN LN “.'\‘.\',]
T TIETY 3 ~r

W 111

ABSTRACT

B A

We present three simulations: a simulation of an alternating Turing machine (ATM)

78

operating in time 7 (n) by an iterative tree automaton (ITA) in time O (T (n)). a simulation

of a d-dimensional iterative array (dlA) operating in time T'(n) by an ATM in time

O({T(n)¥). and a simulation of an ITA operating in time T(n) by an ATM in time

o

O ((T(n))?). The first two improve previously known results. The first implies the simula-

tion of a nondeterministic Turing machine by an ITA in time O(T(n)) of Culik and Yu

ﬁ (1984). The second is stronger than the simulation of a dIA by an ATM in time

O ((T(n)Y *Y/logT (n)) of Seiferas (1977) and Dymond and Tompa (1985).

T O O O TR U TR R S O T T T T T T L P C PO IR T RN TR R L*.‘.'&V:‘l'.‘(!.‘i'nmmm
DTy ‘

<

ACKNOWLEDGEMENTS

I wish to thank my thesis advisor, Dr. Michael C. Loui. for his encouragement. guidance. and
‘ @ constructive suggestions for this thesis. | also wish to thank my parents for their constant
>

support throughout my education. This work was supported in part by the Office of Naval

{ .
gﬁ Research under contract N0O0014-85-K-0570.

>

: o LA oL P T Tt N TR 5
{l\m{ {1{2‘. W{x{l} g i& a.‘_x{{;.; _;'_:: Sl h"-.\'s_...,ksl'\., AR AR T, ':A.&&'aiw.,i

. g 9 r TPt
- W W “ W ol - PR e % - - n - - -
e st a o s Gedmsals nan poa som fcn Gomdtef it Salobab Sat | i It e g ol by U - w m -

ES; v
TABLE OF CONTENTS

R

(e

;h& Chapter Page

g 1. INTRODUCTION ceoooreeeeeroeeomeeseseeseeeeseessssessessesssessessssesssessmsesseesssesmsmssssssesesessesmsssssnns 1

‘_ 2. DEFINITIONS c.oooeeeeeeeeeeeeeseeseeeeeresesseeeeesseesssseseesseseesseessseseeemmessseseesmesesessommasassesesseseres 3

& 3. LITERATURE REVIEW..oooooommeoeooeeoeeeeveeseeesosseressseesssessseseessasessessseeesesessessmessssssosnssenns 7

3 4. THE ITA SIMULATION OF THE DIA ooomerereoeseeeeeeees oo eeeesesessesnmsessesssssmassnssseeeessens 9

W 5. THE ATV SIMULATION OF THE ITA coorooeovooooeeeeeeoes e eeeesesseseesesossesessessssssessmamassons 28

& 6. CONCLUSIONS AND OPEN PROBLEMS ...con..coooeeoeeeerevseeesesessessasssssesoressssssssssnereess 34
REFERENCES......eveem e eeveoeseeeeseesmessessesesesssesesssosesssessesesessseeseseseseessmessessessmsesessesmasassssssesesens 36

e

3

o

3

S v
>y

a
.
L
‘\
.
Y e g W A e Ly R N LI TR A B PRI RE SK SR S AR ” O % f&n‘ - o % ..(‘.',’.""\f 'f.‘_‘"“. [
M i/ a 3ol s w'f;‘!.‘,'l !’\‘ X! a"'ﬁ"‘c- &%“zai' L l e, !"‘:'l‘\ og Wi -’.- e tyﬂ" 2 ST T s . "N :

TN W R T an w_ E,

Bt atE atl B e A b i as. s el At s A acl i b et ab e gtis il BoRE Par

:A;‘A 3!

LIST OF FIGURES

_

o

.
‘-.-h”

Figure 4.1 - Table of state transitions from state ¢,

...

Figure 4.2 - Table of state transitions from state ¢,

E‘:’} Figure 4.3 - Computation array C for 1-dimensional caseccccecemincrumnrirccrinecnnnnns
o Figure 4.4 - §D . input to procedure ASIMD
- FOr 1-dimMeNSIONAL CASL......covececmrrrerrenrseaesese e iecassseesncnenssnseseserasenrsessnsaenees
- Figure 4.5 - Values known in computation array D after Step 3 of ASIMD

Figure 5.1 - Contents of ATM tapes in procedure ASIMTccocoiiimmnienninniinncinnniniins

[y
L N]

o

) A R O R A
L WSV AYEWRTE VR FETRY LT W

f s bn Y
o)

[

Chapter 1

INTRODUCTION

Multidimensional iterative arrays., iterative tree automata. and alternating Turing
machines are important models of parailel computation. A d-dimensional iterative array
(dlA) comprises an infinite set of finite state machines located at the points of the d-
dimensional integer lattice. An iterative tree automaton (ITA) consists of an infinite set of
finite state machines connected into a binary tree. An alternating Turing machine (ATM),
like a nondeterministic Turing machine (NTM), may have choices of transitions for each com-
bination of state, input symbol., and worktape symbols. From an existential state an ATM
accepts if at least one choice leads to an accepting state; from a universal state an ATM
accepts if every choice leads to an accepting state. One can view the ATM as a computational
‘model that makes copies of itself to evaluate each of the choices. A d;aermini:tic Turing
machine (DTM) has only a single possible transition for each combination of state. input
svmbol. and worktape symbols. Each of these models has a fixed structure. Each processor
(finite state machine or ATM copy) can communicate with only a fixed set of other proces-
cors. in contrast to variable structure models such as the hardware modification machines of

Dymond and Cook (1980) and the parallel random access machines of Fortune and Wy!lie

{1978).

This thesis studies the simulation of a dIA by an ITA. The simulation of an ATM by
an ITA and the simulation of a dIA by an ATM achieve this purpose. Let X(1) denote the set
of all languages recognized by machines of type X in time (). vhere X € {dlA, ITA, ATM,
DTM, NTM/}. These simulations produce the following time bounds:

ATM() S ITA(L) and
dIA(t) & ATM (¢7).

In addition, this thesis presents the simulation of an ITA by an ATM wiathin the bound

o m e e e a e e - . Cows Y
R T N e FEC RSP

s wgad

R NN LN
; Sl e P SR B B T R TR e R N N S
R TR LR TR O A A TSR MA YEI Y X 2 TS S AP 5 3 »Y

A 28 st sl ol ate - LE8 ubah bk’ AR Sl -’"'-4"!1.'".Fr'."""’?'.'n"(""l’".'"I"L."LXU‘EILIx‘\'v"!v'l“.‘\\\\lv\';'.v' ST TR TR YW U T

-
Al
o
%]
e

-
- A

T TR
J' -l
A

ITA(1) € ATM (¢2). and considers the simulation of an ATM by a dIA.

Two of Lthe above Lime bounds improve previously known results. The first, ATM(1) &
ITA(t). implies the bound NTM(t) & ITA() established by Culik and Yu (1984) because an
NTM is more restricted than an ATM. The second. dIA(t) & ATM(t“), is better than dIA(t)
S ATM(:“*Y/1og ¢). The latter bound arises from the combination of a result of Seiferas
(1977a). who proved that dIA(t) & DTM(:¢*1), and a result of Dymond and Tompa (1985).

who established that DTM(1) © ATM(t/log t).

Aside from improving upon previous findings. the results described in this thesis are
significant because they extend current knowlcdge about ATMs. In addiuon to the usual
computational resources time and space (which generally are inversely related). the ATM has
alternations between universal and existentia! states as a computational resource. The ATM
simulation of the dIA and the ATM simulation of the ITA utilize the resource aliernation to

achieve the stated time bounds.

The ITA simulation of an ATM uses the ITA's capability to emulate direct central con-
trol. that is. to act as though the state transitions of each finite state machine in the ITA
depend on the state of a uniquely designated finite state machine. The techniques of Seiferas

(1977b) are used to establish the direct central control capability of the ITA.

The ATM simulation of the dIA uses the "divide-and-conquer” technique. as in Savitch

(1970). Paterson (1972), and Loui (1981).

The framework of this thesis is as follows. Chapter 2 gives definitions of the dlA, the
ITA. and the ATM. Chapter 3 reviews the literature related 1o the thesis research. Chapters
4 and S detail Lhe simulations themselves. prove their correctness. and determine their run-

ning times. Chapter 6 describes the conclusions reached from this research and offers some

open research problems.

g i T I S I T AT
CNALELE D R 4 Dol LT D e T S N

RS

i "R A Sl Sal S

—tﬂlu_‘__m___——m——w-‘m-‘—“

: 3
h \:\
RS
Chapter 2
. n DEFINITIONS
R
Y

To more precisely describe the actions of the computational models in the simulations

5_”- to follow, this chapter defines the dIA. the ITA. and the ATM.

3

~ Let n be the length of the input string. For all n, a machine recognizes an input string

sl; of length n in time T(n) if the machine requires at most T(n) steps to accept the input string.

A d-dimensional iterative array (dl1A) is an infinite synchronized d-dimensional array of

- finite state machines. one for each d-tuple of nonnegative integers. In dIA M let M(X) denote

& the machine corresponding to the d-tup}e X. called the coordinates of M(X). Let O denote

. the d-tuple of all 0s. Only M(Q) receives input symbols and produces output symbols. At

: each step M(Q) reads a new symbol of the input string or does not read a new symbol as a

. function of the current state of itself. the current states of its neighbors. and the current
input symbol. A neighbor of 2 machine with coordinates X in the array is a machine whose

" coordinates are obtained by adding or subtracting 1 from a single coordinate of X. The state
transitions of every machine depend on the current states of the machine itself and its 2d

! neighbors. The state transitions of M(Q) depend additionally on the current input symbol.

- A dIA accepts an input string in T* when M(Q) enters a state in a designated set of final

states.

-

N Formally. a dIA M is a septuple M =(d .Q .L.5,.8.» .F) where

d is a positive integer,

‘- Q is a finite set of states.

: v{’:' Z is a finite input alphabet (S € is an endmarker. B £ is the blank svmbol).
o

5, Q% "Ix{Z U{B .$})~Q is the transition funrction for M(Q). the machine at the origin.
g

5: @ *1=Q is the transition function for every machine other than M(0),

.
v
.-

ro QW TIx(TUIB $1i=lirue . ‘alse} is the funclion that specifies whether M(Q) reads the

...........

TR T e TR T w RN RN T RS T E T e TN e A T

2

next input symbol. and

F & Qs a set of final states.

g\ € Q is a special gquiescent state. Initially. every machine is in a quiescent state. §
satisfies the condition 8(¢,.¢,.....9 \)=g, thus except for M(Q). a machine leaves the quiescent
state only after a neighbor leaves the quiescent state. Infinite B's are assumed to follow the

end of the input string.

An iterative tree auwomaton (ITA) is composed of synchronized finite state machines
connected in an infinite full binary tree structure. Let R (A) denote the root of ITA R, where
A is the empty siring. In general. for any finite binary string 8 let R (B0) and R (B1) denote
the left and right children of R(B), respectively. The level of R(B) is |81, the length of B.
Define | A1 =0. Only R (\) receives input symbols and produces output symbols. At each step
R (M) reads a new symbol of the input string or does not read a new symbol as a function of
the current state of the root. the current states of its two children. and the current input
symbol. The current state of the root. the current states of its two children, and the current

input symbol determine the next state of R(A). For every other machine in the ITA. the

current states of the machine itself. its parent and its left and right children determine the

next state of the machine. An ITA accepts an input string when R(A) enters any one of a

designated set of final states.

Formally. an ITA R is a septuple R = (Q .L.8,.5, .8, r .F) where
Q 1s a finite set of states.
T is a finuite input alphabet (S £Z is an endmarker, B £ is the blank symbol),
8., @x{ZTU!B .§1ixQ—(is the transition function for R{A). the machine at the root.
8.6 1 (*=() are the transition {unctions of the left and risht children. respectively. ol
2ach machine R 3). 3 € [0.1}*

a

r QRZUIB 31 xQ7={true . false } is the function that spec fies whether the root reads

the next input svmbol. and

T L T T

T R I T A T T I T T T T R T g ry TN TN TN TS TR TR TN R TATF 78

5
"o
y
53
F & Qs aset of final states.
! If X.W.Y.Z are respectively Lhe current states of R(B0), its parent R(B), its left

child R(B00), and its right child R(B01). then §,(X .W.Y .Z) is the next state of R(B0).

Similarly 8, specifies the next state of each R (B1).

‘g g € Q is a special quiescent state. Initially, every machine in the ITA is in a quiescent
. state. d satisfies the condition 8(¢,.¢..9,.9,)=¢, Where § is §, or §, thus except for R(A). a
m machine leaves the quiescent state only after its parent leaves the quiescent state. Infinite B's
3 are :;ssumed to follow the input string. The transition function for a left child must be

different from the transition function for a right child for the ITA to be distinct from a 11A.

& A configuration of an ITA R is a pair (C,w). where C is a mapping from the machines in
R to Q and w €Z*§. For all B€{0.1}*. X €{0.1}. where w is the unread portion of the input
string, R has a legal transition from (C,w) to (C'w") if

i (1) C'(A\)=8,(C(N).a.C(0).C(1)).

- (2) C'(B0)=8,(C (80).C (800).C (801).C (B)),

- (3) C'(B1)=85,(C(B81).C(B10).C(B11).C(B)). and

(4) w=w'=g=$, or

o w=aw' if r(C(\).C(0).C(1).a)=true.or
i w=w'if r (C(A\).C(0).C(1).a)=false.
.
A computation by ITA R is a sequence (Cy.w,). (C,.w). (Cawa). ... of configurations
E? where the transition from (C; w,) to (C, .;.w, ;) is legal for all k. Note that C, (B)=C (8)
C:‘ for '8! 2k since we star: with all machines in a quiescent state.
. An alternating Turing machine (ATM) is defined in Chandra. Kozen, and Stockmeyer
Es,. (1981). A conpiguratior. 5f an ATM is the state of the ATM. the contents of the input tape.
|4
the contents of each of the worktapes. and the locations of each of the tape heads. An ATM
ﬁ is a Turing machine in which every nonfinal state is either universal or existcntial. A

g configuration with an existential state 1s accepting if at least one successor conliguration is

TRTNY S R's Bem % A% BdeSde Mia-ASe- At Séel R50 4Aecsoe e den ain g i S0u St SR pus i L AR At £ Ak i S i) A ASEA ARk el
o eV b J b avy [AN . - - R - v e L - - 1 . -
s':'
¢ .
|';l
. '.‘
T2 ‘
=3 6

accepting. A configuration with a universal state is accepting if every successor configuration

is accepting. An ATM accepts an input string if its initial configuration is accepting. An

"' ATM has a two-way read-only input tape with endmarkers and k worktapes, which are ini-
-.:;. tially blank. A step of an ATM consists of reading one symbol from each worktape and
Ny | reading an input symbol. then writing a symbol on each of the worktapes. moving each of
Ay

:-:E the heads left or right one tape square or not moving the tape heads. and choosing a new state .
:: from the set specified by the transition function.

,},: One can describe all possible computations of an ATM on some input string as a compu-
~.. tation tree. All nodes are configurations, the root is the initial configuration. and the children
ﬁ of any configuration ¢ are exactly those configurations that can be reached from c in one step
5 according to the transition rules of the ATM. The leaves of the tree are the final
_ri‘ configurations and may be accepting or rejecting. A branch of the computation tree is a
?'1 ® downward directed path from the root: in other words, a branch is a sequence of
'-.f;. configurations starting with the initial configuration. Assume that for an ATM to run in time
T(n). all branches terminate in at most T(a) steps.

Formally, an ATM AM is a septuple AM = (k .Q Z.I.8.4,.¢g) where
k is the number of wotkiapes,

Q is a finite set of states,

- -y g
A

ol

A I is a finite input alphabet ($ £Z is an endmarker),
-::: T is a finite worktape alphabet (B € T is the blank symbol),
- _
. 8 QxI*x(Z UISH—=P(Qx(T =B) xlleft.right. stationary |* *') is the transition
N function, where P(S} is *he power set of S, that is. the collection of subsets of S.
L ¢. € Q is the initiai siate. and
e
\.:f- g Q —luniversal . existential . accept . reject | is a mapping identifving each state as 1
y universal. existential, accepting, or rejecting state.
¥ {:‘
¥,
T
o
.
Led

AR Ay DRIt : e]
'.f__"'" -‘I’)I..A-h.;-lh*“lﬂ-fAEL‘.LALJI—iL LM-_.-

i 202 3.0 b g i ik s s e

:

| S

Ly oty Sty N P SO R i SRyt ey 8 U p B O e R Rt
N U I 0 B A R LA RN T 41 T Oy SRR S

Chapter 3
LITERATURE REVIEW

This chapter reviews the literature related to the research reported in this thesis.

Chandra. Kozen. and Stockmeyer (1981) present the concept of alternation. (The same
authors originally presented the concept in Chandra and Stockmeyer (1976) and Kozen
(1976).) This thesis uses their ATM model. They derive significant relationships between
classes of languages accepted by time and space bounded ATMs and those accepted by time
and space bounded DTMs. In particular. logarithmic alternating space is equivalent to poly-
nomial deterministic time. and polynomial alternating time is equivalent to polynomial
deterministic space. Paul. Prauss. and Reischuk (1980) demonstrate that an ATM with a sin-

gle tape can simulate an ATM with multiple tapes in linear time.

Dymond and Tompa (1985) prove another result related to this thesis. They establish
that DTM(1) & ATM(v/log t). Their proof associates the computation of the DTM with an
acyclic directed graph. They use a two-person pebbling game to pebble the graph within a
time bound of O(n/log n) for a graph with n vertices. Next, the ATM steps simulate the
two-person pebbling of the graph. In the pebbling game. one person’s moves correspond to
existential choices of the ATM. and the other person’s moves correspond to universal choices

of the ATM.

Paterson (1972) represents a TM computation as a two-dimensional diagram of succes-
sive tape configurations. He employs divide-and-conquer in both time and space dimensions.
This method is generalized in this thesis in the simulation of a dIA by an ATM. Loui (1981)
establishes a space bound for a DTM to accept the same language as a d-dimensional NTM
with one worktape head. The proof utilizes a generalization of crossing sequences across the
boundaries of d-dimensional boxes of the worktape. He uses a divide-and-conquer method to

recursively partition the boxes.

Yo e m e ~
L

. EATATATLRLT R
Kalyhxy :i".ui Y

R RGACA &l B A Nadh And udt asts e madaakd-an o sab afier et e datc e SanShat fel fant il ek Jhdh ATl MR v e A sl AR ALNLRL W ‘*‘FT\‘&‘DL‘((.“L‘\L‘Ta

14

L .'_4,."1,’4., CARE S A

v

gom g Qe G Ry hug Rty gy gy g iy S Ao vp o sai i R e i aa B MRl W B sl o B o o ot aa g e B Al AR SR G S Sl B S S i A A A S il G & Sl S G i ged 4 I -t B A A Y S A I

8
o
""4 Rosenfeld (1979) presents a good review of iterative automata.
Yo i
-‘j Cole (1969) formally presents the d-dimensional iterative array of finite state
20
:::: machines. He establishes that the computing speed of a dIA can be increased by a constant

factor by enlarging the set of states of each machine. He proves that the class of context-free

,-" languages does not contain all the sets of strings accepted by a dIA, nor do the sets of strings
i ::'_3 accepted by a dlA contain all context-free languages. He proves -t.hat computing capability
;". increases as the number of dimensions increases.
' ‘ Seiferas (1977a) extends Cole's work on deterministic dlAs to nondeterministic dlAs
.~ (NdIAs). He derives that
ke NTM(:¢) € NdIA(),
‘3.' NdIA(t) © NTM(z¢*%), and]
38 dIA(1) § DTM(e¢ *). |
G The second result is related to the simulation of an NdIA by an ATM given in this thesis.
,-": His simulation uses about n? steps of a one-dimensional (2d+1) head TM to simulate the nth
.;_(step in a computation of a dIA.
‘:.' Seiferas (1977b) establishes that a dIA with direct central control is no more powerful
: than a regular dIA. and that a regular dIA can simulate a dIA with direct central control in
42: linear time. In this simulation. the finite state machine at the origin of the dIA controls the
R dIA indirectly by propagating the value of its state outward using only local communication.
‘r\§ Culik and Yu (1984) construct a language L such that an ITA accepts L in real-time,
'{I but no dlA can accept L in real-time. They state that the converse problem. that is, whether
. real-time dIA languages (d 22) are properly contained in real-time ITA languages. is an open
:‘f:.. problem. They establish that an [TA can simulate an NTM in linear time. Their simulation
&': provides a basis for the simulation of an ATM by an ITA in Chapter 4.
2
%5
24
r

e AR L L L N L A T RN R W1 ':-‘ .
AN f) ‘\» ~-1-)'! .‘.&"' 23 LN ""'" 2 ,.\'r‘

9

(s
by Ay

= 2

Chapter 4

THE ITA SIMULATION OF THE DIA

This chapter contains a simulation of the ATM by the ITA and a simulation of the dIA

by the ATM and proofs of the correciness of each simulation.

Lemma 1: Every language recognized in time ¢ by a k -tape ATM can be recognized in time

O (¢) by a one-tape ATM.

This result is from Paul. Prauss. and Reischuk (1980). They specify that the one-tape

ATM does not have separate input and output tapes.

Lemma 2: Every ¢ steps of an ATM with at most ¢ 23 choices at each step can be simulated

by {c—=1)t steps of an ATM with at most 2 choices at each step.

Proof: Let M = (k .Q .Z.I'.8.9.2) be an ATM with at most ¢ choices at each step. We

define an ATM M' = (k.Q".Z.T.8'q, . g) with at most 2 choices at each step such that M’

simulates M. Let a transition rule of M be
s(q()-wl).al)) = {(‘] 1 W l'Xl)'(q.'!'w.’.-XZ)""'(q/ W, ,.Yj)}
for goqg1.....9, €Q. wow...w, €T a,€TUIS), XX, ... X, €lleft right stationary }.

0<Sc. If j<X2, then &(qqw,ya,)=8(gywya,). Otherwise, 8 has the following

corresponding rules:

5'((](,.W(,.a”} = (q 1w l'X 1)(}7 ,.W(,,stationary)}

3(p waan) = {g2w42.Xa(pawa.stationary)}

3(p. cawnan, =g, o w, .. X, Mg, w, X. L

The new state set Q' includes Q and all the new states p;.ps. P, -2 that are used in the

- . — L i Rt i shdi” Sl S T DR S SRR
T T T T TR TR A TOR L L =p e anie e iy bar i marat L S he A Sl ni - St e B o RE L] vow s ow] k2
T TR YT " T T 1

" - e Yt (A
'Q}‘\$1h"- .- \i '&‘ ” }' \:1L.'1 ‘x.w{-{.’;-{xlﬁ:‘-lﬂ lsh-lx_.'x.L e

« "=l 4T 'Y

R g arak el A 28 fC AR A M e A ahas g cah - e* e aet o et e Sae mes ac el das Lug Rak Ak Bah SakiEad el sk -Ad SdAh A A AT A Aaa A i e A Skt e Sh ke Al el el TN NI eYIvevy

D
Iy 10
v",
"
;‘" decomposition of the steps with three or more choices into steps with two choices.
A
i It is clear that each move of M can be simulated by M' with at most ¢ —1 moves. So
ot (¢ —1)t steps of M’ are enough to simulate? stepsof M. O
b .
j" Definition: Subtree Broadcast ITA (SBITA) — An SBITA S is the same as an ITA except
o
rd .
as specified in the following. Some of the machines in S are designated to be control units. If
§i
) S(a) is a control unit, then for every descendant S(B) of S(a). the next state of S(B)
A\
:j depends on the current state of S () as well as on the current states of S(8) and its parent
j:: and its children. At all times, for every machine S(8). at most one ancestor of S(B8) is a con-
)
trol unit. During the computation a control unit S(a) ceases to function as a control unit
[
.:’, when it designates its children S (a0) and S (al) to become control units. Initially. S(A) is
Xy
N the only control unit.
‘r'
:;' Lemma 3: Every t steps of an SBITA can be simulated by 2¢ steps of an ITA.
.%‘.
9 Proof: Let S be an SBITA. We design an ITA R that simulates S.
4 R (B) is designated as a control unit when the state of R(B) is in a special set of states
hH)
! called the broadcast set. The broadcast set contains a particular state g, . and R (B) entears
' state g¢,,;; on the step before it will pass its control unit capabilities to its descendants. If
) R(B) is in state ¢, at any time t, then at time t+1, R(B) will be in some state not in the
59
:':- broadcast set. At any time t. the state of R(B) can be in the broadcast set only if one ¢{ the
" following is true:
s
» (1) B=A and 1=0,
~:'
)
e (2) at time t-1. the state of R(B) was in the broadcast set. or
[
,:! (3) at time t-1, the parent of R(B) was in state ¢,q, -
[A7)
_ The remainder of the proof is taken directly from Seiferas (1977h). and is modified 10
E apply to deterministic IT As rather than nondeterministic dlAs. Infermally. a machine in R
%

AT AR A AT
- LN . N N . " .
> P AT RIS SNV 3 Sk A:_L'\- e e e

1

v LTI EU T TaTY e T T TR R LT
A W TR T TT TR O R IR TN T WG W e L asalainh- 4 ged arALRt A 8- 2o0 Bl n‘u-w-nu-x—ww'.‘v!mvﬂ,w‘-.'t-."ﬂ'v‘._1\:1‘1[‘!&.‘"
-

»
N

11

s
.' Ll 4

simulating a control unit in S performs a broadcast by propagating the values of its states to

its descendants. The simulation of each descendant will lag by time equal to its distance

from the control unit, so communication between a control unit and any descendant will

take twice as long in R as in S.

P |

Let Q' denote the set of states of each machine in S. Let §',. 8',. and §', denote the tran-

.
(3

sition functions of S.

A

Ry

o Let Q denote the set of states in R, where ¢ ,=({0.1}Xg,Xg\Xqg)).
‘% Q0 =({0.1}xQ 'XQ 'XQ 'YUq . When ¢ €Q . denote the first component as phasely). the second
L

component as conirollq). the third component as prev(g). and the fourth component as

s

current(q). Conerol (g) propagates the states of the control unit to its descendants: prev (g)

holds the previous state of a machine for reference by its children; current (¢) holds the

. 4

PO

current state in the simulation of the corresponding machine in S.

Define for R (A) as control unit

' ‘

(0, 8'y(control (g,).current (¢,)a g’ 4",). current (g,).
8'y(corurol (g,).current (¢,)a g’ 4",))
g if ¢, €0 —g \.phase (g,)=1.
& (1.controi (q,).prev (q,).current (g,))
s dy(q. a.q1.q.)= if g, €Q~g \.phase(q,)=0.r(q, .a g4; g,)=false .
a:: (1.phase (g,).phase (g,).phase (g,))
if g, =q .. r(yq, .a .4 4)=false, or

E i L
P
P

by 172
W .
1 otherwise .

phase(q,) il g, =y or

w = .
e here 4", = \current (¢,) otherwise.

.- "~ Define for R(B), B#A. where R (8) is a control unit.

" - -wL Ml w e ¥ - - e B -
k g “pa i g Uk Al vav i it a ack imini gt sl ok Rt ol 4 ' tap -

A
aw

oy

:::' 12 :
K :
K -

A (0. &) (control (¢,).current (¢,).q"s 4", 4 ',). current (g,).

t.-.o, &' (control (g,).currens (¢,)y '/ 4", 4',))

;‘ if g, €Q =g \.phase (g,)=1, ;
}; (1.control (q,).prev(q,).current (g,)) Ny
.‘~

8,(q. 9,9, 4,)={ if 9. €Q —q \.phase (¢,)=0.
(1.phase (g,).phase (g,).phase (g,))
if gy =q Ao Or

=3

'~

o

otherwise .

?mv" o .

A phase(q;) ifq,=qor X
,:? where ¢\ = | irrent (¢;) otherwise. '
&
Y .
¥ 3. is defined similarly.
:’, " Define for R (B).8%A. where R (8) is not a control unit.
‘h\:
Los
;:a.: (0.control (g,).current (¢,). & (control (¢,).current (¢,)" 4", 4 ',))
o if ¢\ 4, €Q —¢ \.phase (¢,)=1,
: (Note: This transition. propagates control information.)

5 (q. .49, 9,) = { if ¢, €Q =g r.phase (g,)=0. {
(1.control (g,).phase (¢,).phase (g,))
if 9\ =q Adp EQ—‘!.\' or

»

2 (1.controi (g,).prev (4,).current (¢,))
N

‘

“

. ‘ i
Wy 7]

A _

5 otherwise. .
[} - ; Y
-

phase (¢;) il ¢,=q
where ' = {prev(y;) ifq, €Q—y \i=p.or
3 current (¢,) otherwise.

8, is defined similarly.

. Informally. the first three cases in each dJefinition above are "simulate a transition.”

“wait your turn to simulate a transition.” and "set up to start simulation.” respectively.

— This completes the definition of ITA R that simulates SBITA S.

L X _x_J
B * “{
PPN

..\
2

.

"y

™ o
T

- -

AR

):“ ‘.f YA e -_)\'_.‘:..;:.‘) ;. IAEIR

mwmwvvvmwvmwwv.w_ TN W IVINWN_ W, MW, e ® ¥ T el e™a
P oot o P Pt pae Ras pgo g ¥ r N - M M - A

! 13
J
A configuration of R is a pair (C .w); a configuration of S is a pair (C'.w).
! The sequence a=[(C,.w,).(C,w).(C;.w)....} of configurations of R is skewed if all of

the following hold for all nonnegative integers j. B8 € {0.1}*:

W2, SWaj+1

if j S1B1.thenC,(B)=C(B)=¢ .
if j>181.thenC,(B)EQ.

1 for j—I81 odd .

phase (C,(B)) = {, for j—IB1 even .

control (C 41+, +1(B))=current (C; .,(A)).

prev (Cc 'B'H(B)) = current (C]‘“4.[(5))

= prev{(C 5)42(8))

= prev (C 514+3(8))

e ——
g
[
s 8

= phase (C,(B)). and
' current (C 4142, +2{B))= current (C 15122, +3(8))

E 'P"‘?V(Clm-»-z/' +4(8))

D)

= prev (C jgi42, +s(B)).

e e~ —————aat

For such a skewed sequence «. define

skew "(a)=[(C '1).W '()).(C “.W '1).(C 'Q.W '2)....]
if the following hold for all nonnegative integers j. B8 € {0.1}*. ¢ =C 5,42, (B):

LS

w' =w,, and

S

i , phase (¢) ilg =g or

-~ C L B= curren: (g) otherwise.

= The definition of a skewed sequence does not restrict the choice of wvalues
U:’i current (C . 5,.5,(B)) for j>0. so every sequence (C'uw',). (C'pw'y). (C'aw’z).. of
: configurations of S where all machines are initially quiescent is equal 10 skew ~!(a) for some
E skewed sequence a. We show below that a is a computation by R from (C..w,) if and only
- if skew ~Ha) is a computation by S from (C,.w,). It will suffice to map state ¢ €Q o state

- PR . -'_\ -, LN I
ASGRER AN NI

. - . L - L R . SV A _-._.
; {\.‘L\.' - "_'.‘\a..z.{ A.'L 'L'JL._:..J. .A..{.‘_‘L.'L_._-.__.{..c._\ e -'&_:.;¢L‘L._..L PR A LW

.

L 0ne - et

--"('

AL A SR E il it et e B RS i

R e

W m

e)
e

[

bl et andh aid St sk S A g A Mnlstalhe 3 bR i i Al M A S a4 4 *B i i Bl VT AT NCE M

14

phase (¢ Y€Q ' if g =g | or 10 state current (¢ J€Q ' otherwise.

Let o be a skewed sequence with
a=[{(Cyw).(C 1w (Crw)(C3w))....] and
skew ~Wa)=[(C',w) .(C '\ w)(C3w),)...]
To prove that a is a computation by R if and only if skew~'(a) is a computation by S, it
suffices to verify for all nonnegative integers j, B € {0.1}* U {A}. y=1B1 or y=18142j+2.
that C, ,,(B) results from the transition from L.C(8. y) and that C 442, +2(8) results from
the transition from LC(B.1B1+2j+1) if and only if C’,,,(8) results from the transition

from LC(B8,j). O

Lemma +4: Every t steps of a one-head. one-tape TM can be simulated by a two-stack

machine in up to 5t sieps.

Proof: This lemma is proved in Hopcroft and Ullman (1979).

Call the stacks of the two-stack machine stack A and stack B. Let tp(1). tp(j)
denote the nonblank contents of the TM tape. The two-stack machine represents a TM
configuration by hoiding tp(1). tp(i) in stack A with tp(i) at the top and tp(i+1). tp(j)
in stack B with tp(i+1) at the top. where tp(i) is the tape element that the head of the TM is

reading.

{n five steps. the two-stack machine can simulate a TM step in which the head moves to

the righ=:

—

Yop tpli) from stack A.

to

“hange the symbol contained in tp(i) to the symbol to be written in this step.
3. Push tpti) back onto stack A,
4. Pop tp(i+1) from stack B.

S. Push tpti+1) onto stack A.

v .

BTN

S o

Ta T L A

q o W W YW TR TS YWY T oYL
[Rl ta e slas Ga= i~ i Bavod.- SasoSed fe> aad ghas) YN TNV W T W I N TR LN PL YL CRL WLUW W L L ek cabh Wb c b G Sl Sk iciel ol sab tolL S Sah Sul ALEEEN L A

15

In three steps. the two-stack machine can simulate a TM step in which the head moves

’ to the left:

1. Pop 1p(i) from stack A,

~
{- 2. Change the symbol contained in tp(i) to the symbol to be written in this TM step.
m 3. Push tp(i) onto stack B.
b 3y
LY
In three steps, the two-stack machine can simulate a TM step in which the head remains
:::f on the same tape element:
({.:: 1. Pop tp(i) from stack A.
\"
b 2. Change the symbol contained in tp(i) to the symbol to be written in this TM step.
:-f: 3. Push 1p(i) back onto stack A. O
-

Theorem 5: For all T (n). every language recognized in time I (n) by a k -tape ATM can be

recognized by an ITA in time O (T (n)).

e X2

Proof: Let AM be a one-tape ATM with at most two choices at each step. By Lemmas 1.

A

2. and 3, to prove the theorem it suffices to show that an SBITA S can simulate AM in time

O(T(n)).

M

It is clear that a one-head. one-tape TM can directly implement a branch of the compu-

ks tation tree of AM. By Lemma 4, a two-stack machine can simulate the actions of a one-head.
o~ one-tape TM.
~

S can implement the stacks in the manner described below {modeled after the imple-
é mentation in Culik and Yu (1984)). For all 8 and all »> 0. all descendants of S{(8) at dis-

lance z from S(B) are in the same state and contain the same stack elements. Let A(B)
denote the portion of S consisting of SfB) and all of its descendants. A(B) implements a pair
of stacks. stack A and stack B. each of which operates separately according to Lhe rules
helow. Every machine in A(3) is a finite state machine and can store one stack eiement of

ﬁ-: each stack. S(B) is a control unit and holds the state of the two-stack machine ard the

- M Bk 2on B0 s Bane) hov et iafie Bas St e d
Y e T TwT Ty gy T WA v o e A e e

"K.""Y\"""v“"u‘_‘ﬁ' ol ia e win Ate Sip A0 Riy gog g <n SN ity . - e A = - o - - J A - P, - . - Pl -

9‘-«.‘

"u‘-

AT ’f" J“’

16

elements at the top of each stack. To push stack A, $(B) broadcasts 1o each of its descen-
dants S(a) to send the element of stack A contained in $(a) to both children of ${a). and
S (B) stores the element to be pushed. To pop stack A, S (B) broadcasts 1o each of its descen-

dants S (a) to send the element of stack contained in S (a) to the parent of S (a).

At the beginning of the simulation, by definition of an SBITA, S(XA) is the only control
unit. A(A) is functioning as a pair of stacks. A and B. to store the input string w. S(A) reads
w and stores w in stack A. S(A) next pops w from stack A and pushes w onto stack B. At
this point. w is stored in stack B with the first symbol of w at the top of stack B. In addi-
tion. A(A) is functioning as a pair of stacks, C and D. to simulate the actions in a branch of
the computation tree of AM. This simulation continues as long as each step in the computa-
tion tree of AM has only one choice. When AM first takes a step with two choices. control
unit S (A) broadcasts 1o its descendants 1o push all stacks one level down. and S{A) passes
the control unit capability to S(0) and S(1). Then A(0) simulates one of the choices. and
A(1) simulates the other choice. S(A) no longer acts as a control unit, but enters existential
state ¢, if AM is in an existential state at this point or enters universal state g, if AMisina
universal state at this point. Whenever two choices are present at a node of the binary com-
putation tree. S will proceed to simulate each of the choices in the manner described above
except the steps will be for A(B) instead of for A(A). S simulates each branch of the binary

computation tree in parallel with the other branches.

When a branch finishes a computation, the unique control unit for that branch sends the
answer (acceptance/rejection) up to its parent. S(8). B€]0.11*. If S(B) is in state ¢, . it will
enter state ¢, . indicaling acceplance, or entier slale ¢,., . indicating rejection. based on the
table in Figure 4.1: if $(B8) is in state ¢, . it will enter state ¢, or state 4., based cn the

table in Figure 4.2.

To determine the time required for S to simulate AM, look at the various componeants

of the simulation. The reading of input string w and positioning of w in stack B by S{A)

(A m e e s '-;‘r SN

Col WAL M

g e fintaae. ga- aae et et thoe Sad aavednio it St Sas Sat et Ret oSt i Achi A

state of R(B1)

state of R (BO) Yace Qorher q"'l

ql’('\' q()CC q(’cf q(l(‘t

Gother Qace o 9e

4re; Yace 9e 9rey

Figure 4.1 - Table of siate transitions from state g, .
Yuner TEPresents any state other
than q,.. orgq,, -

P D R RN T
et e A T R

LTSS D P i
AR S SRR S A W

o S I I I A N S N TN T T W NS oNTTs

18 [

-
Post
state of R(81)
Slate Of R (Bo) QG(‘I qulhrl ‘1: ey ."::
Qm’c qncc P ‘1:-«-]
Qorher 9y Gu q:-c/
qu'/ ‘ilr/ ql(‘j ‘{,c,

Figure 4.2 - Table of state transitions from state ¢, .

-

gt a

T Y
.
P

.
. s
~ -.Q‘

L [

e,

5%

lf *

b

Yoyt SR '-', .
IR IR0

19

requires time 2n. By Lemma 4. the two-stack simulation of each branch requires time
O(T(n)). The concurrent SBITA simulation of two-stack machines requires time T(n). The
passing of the result up to the root requires time T(n). Therefore the overall simulation of

AM by S requires time (T(n)). O

Next is the ATM simulation of the dIA.

Thevrem 6: For all T (n). every language recognized in time 7 (n) by a dIA can be recognized

in time O ((T(n)}) by an ATM.

Proof: Let M be a nondeterministic dlA of time complexity T(n). We design an ATM

AM that will simulate the operation of M. (Note: AM will existentially guess T(n).)

The local configuration of M(X) at time t. denoted LC(X.1). is the (2d+1)-tuple contain-

ing the state of M(X) at time t and the states of the 2d neighbors of M(X) at time 1.

The computation of M on the input can be expressed by a (d+1)-dimensional computa-
tion array C in which the value at coordinates (X.t) is the state of M(X) at time t. except for
one column of C that contains the input string. (See Figure 4.3.) For all d-dimensional
subarrays D of C denote the endpoints of D as x;, and x;, in dimension 1. x;, and ¢ in
dimension 2. x,, and x,, in dimension d. and ¢, and ¢, in dimension d+1. where
X1, <X1p. X2g KXy ou Uy <ty For k=1...d. let X; denote {x;, =1.x,, ...xs X1 +1}. Let
X' denote {x;,x;» }. Let (x,.X3.X3, ... X]4+; ') denote the set of coordinates

(x X o =1xy, =11,)
(X 4y X g Cag=Toty) o,
(x 1, xamrlxg, ~1..2,).
(X 1y X g0 =1 X35 ey Do e
(X, Xy +1.X 3, ly) s
(X, Xaptlx g +1080i0

Let 3D be the boundary of D. §D contains a value tor 2ach coordinate vector in the unwon of

T - Al A4 e A T Shin R R Y
TR T VR Y " T R T P TR T I U O T TR AT TV W LW L L ~adin - aiinsaie= Al - et s (it valko i " Sl “thlle *A e il Yt A b B ARt ABS M S g ™

) anrm s
S IR

«

.

.":l' -;' . "‘.‘)

e &

~ v]
R ¢

MR

P

.‘:
A

time

machines =3

input 0 1 2

T(n)

T(n) * L] L]

Figure 4.3 - Computation array C for 1-dimensional case

Py TR TR TN r—‘:‘;-\“x,-ru-‘.‘-!Wv:vu-\:-vvgnwnrhLY‘_‘WLY\:‘\(.Y['UV\L-LW!:U\NL'\L‘\-[\\'&.‘Y\\l'\\\;'."\".'."'-'1\"\‘\‘."’.'\\1\1'.".\"\. - -

WY
C
21
e
the sets)
. (x h,—l.x; ----.X,} .X‘; +1 ').
o (%10 X2 00Xy Xg 01 ")
W
o . - v
h (x 1a +1.XZXd .Xd +1 ‘).
‘L" (x lb—l.X}X‘; .X‘; +1 ')-
L _f
(x 15 X3 e Xg Xg 41 '),
i . Dy
o (x4 +1.X3 0o Xy Xg 11).
A (X] x2q=1.X73 .. X7 . X 41 e
\:'-. (X] .Xé Xyp +1.XJ+]').
= (X7]....X;.t,). and
- i
(Xl ..---X‘l .zb).
: Informally. 30 consists of 6d +2 sets of values around the boundary of D. The values at the
corners of D are contained in multiple sets. Each set of values is contained on a separate lape.
1.4
. 9C contains the input string.
L\E-d (Note: For d=1. §D is shown in Figure 4.4.)
) -
Assume that when M(Q) enters an accepting state. then on the following steps M(Q)
g remains in the accepting state. and every other machine in M proceeds to enter the quiescent
r state.
£+
i Detine valid (§D) 1o be a predicate that is true if and only if there is an assignment of
-
.::- states to the entries of D such that all state transitions of each machine in M follow from the
_ transition rules of M. Call such an assignment consistent. The recursive procedure ASIMD.
s-':
a defined below, computes the predicate valid , that is. ASIMD returns "true” or "false.” ASIMD
o uses a divide-and-conquer method according 1o lime and according 1o each dimension of the

machines in M.

»
.
-
T,

"'

Initiailly, AM reads the input string. existentiatly inserts null symbols in the input

string for the steps when M does not read an input syvmbol. existentially guesses the

AN
PR R IR R =S | - | L

- e A v
. P LI BTV PR SN R A AP
< v ey e RN .'- R . . SR

4
‘5.
ST

RALSERR XA oo AR
)..1" I-i‘.*-‘.’-.f.!’a.i_\.(z,; LA u‘{a.’_..@‘. M AR e A AL e kil YN k. Saein LaX

"A
.
v
a
-
i

A TIRDTRAXAYP NN FEANAAE T U %71 W1 Ml %Y Wiy el di-el B w8 RemeE e

T WE WS W WO W W ooV @ LS a® RV Rh 4 Cal Savs S Sl i S Sern il AN

22

machines ==»

\
\
\

Y

e

vy,

ty

Figure 4.4 - D, input to procedure ASIMD for 1-dimensional case

-y -

$' - - - -

- . - > 7 et LR B . -~ ot Y -

3 L e e e e e e e e aa e t ta
LRL £ PGP PR ENE REA LI RH, LR SR SR A

T T lare il “ad ir- adbiutabud * ol * oSl JEMAC A & I g A A A
TS YTV RN ¢ TN e T IR N N G A N e T NS M e 2+ B e M ma g it o Se aid LI RAEL pAd gt abi g AU i i ¥

23
el
remainder of §C . and calls ASIMD(3C). AM assumes that the length of every side of C is
! the smallest power of 2 greater than or equal 10 T(n). AM accepts the input string if and
. only if
> _—
RN (1) ASIMD(GC) returns "true.” and

(2) the state of M(Q) at time T(n) determined by ASIMD(QC) is an accepting stale.

=l

The recursive procedure ASIMD(3D) is defined as follows:

o Input: 3D.
.:}" Input invariant: There exisis an integer j such that for all i x,, —x,, =2/ and ¢, —¢, =2/

Call 2/ the width of D.
~
“ L]

Output: “true” or "false”

- Step 1: If the width of D is 1, then check that for all Y representing cocrdinates in D,
i the state of M(Y) at time ¢, =¢, +1 correctly follows from LC(Y.t,) according to the transi-

tion rules of M. If this condition holds. then the answer returned by this invocation of
‘s ASIMD is "true”; otherwise. the answer is "false.”
[

Step 2: At this point the width of D is greater than 1. Let ¢, =(¢, +¢,)/2. Existentially

W guess the states for ali machines whose coordinates are in (X}X,) at time ¢, . For ali
o machines whose state at time ¢,, is in §D . check that the state guessed in this step is equal to
t the state in §0 . If the states are not equal. then return “false.”
™
N Step 3: For each i, 1<i €d. let x,, =(x,, +x,)/2. Existentially guess LC(Y..t) for all ¥
. € (X,.X5,...%,,..X;)and all ¢, ¢ €t.. Check that the states in LC(}Y ¢,). LC{} «.).
B and LC(Y .,) are »qual 10 the corresponding states in §/2 and to the corresponding stales
e guessed in Step 2. I any of the corresponding states are not equal. then return "lalse.” (See \
«-’

ey

Figure 4.5.)

[

Step 4: Universaily choose one of the 2Y~! subarravs of D created from performing

divide-and-conquer in each of the (d+1) dimensions of 1.

5)
et e

AA'-:"

o '

. . . ~ - R RV) 3

AL T BT) -’ . -, R S, '~.*.'_.'..._ e e T e e s et e T e
m[. il RN 'Lau" y \L;\‘\h;_fs e \L«_ x_\, TRV PLTL TSN S Y AT O TR R B IR U & LS PSS FILT R V. R Tatarani s

J " 7 ~ Lot N Al Y L aka veiis Sle e Ale g us - g ue Aube il BAR L Aon Al genf
g a¢s 4'A N'm ‘8 S A2 A%2 SR B S 4 o - \Sa S ey s A - -

‘ 24

* - machines =—=p
time

X 1y X 1 X 1h

o ‘a AN SN

Dala)a
VOIS

Figure 4.5 - Values known in computation array D after Step 3 of ASIMD

F—
.
L

e N T es o Lt L
SO A IS R R S
.';“'{;L"L“A{‘» YRR CAEARITRAS

. car et 4t N a P - -
- B T I A A P R Hhe
- e e R L da Ca

-
T §
2o s Mo & adlh lag n

T " — LWL YL s UwWTTYY L N § %
e Ate St e s 8k Biacebioash i gt sl sl ol Sl thawi dol 4o 8 A i RN A KR IS A R ek R piibasoiae i, Snon St iad Tk M’ Aep Mok d b Ve Se bl

{

“¢ 2

Step 5: Let S be the subarray chosen in Step 4. Call ASIMD(3S).

Step 6: If all universal choices in Siep 5 return "true.” then return “true”; otherwise.

return “false.”

l"\l P

Q Now we prove that AM accepts if and only if M accepts.

N First we show that ASIMD (§C) returns "true” if and only if valid (§C) is true. Let 2/
"

:; be the width of 3§D . the input to ASIMD. By induction on j we show that ASIMD (D)
o returns "true” if and oniy if valid (§D) is true.

h Basis (j=1): Step 1 of ASIMD confirms that each state at time ¢, follows from the
i states at ¢, according to the transition rules of M. Steps 2 and 3 confirm that state informa-
tion on separate tapes for the same machine at the same time is equal. Therefore. valid (3D)
‘\‘:: is Lrue.

i . Conversely, if valid (3D) is true. then the assignment of states to entries of D Q3D is

consistent. Therefore. Step 1 of ASIMD confirms that each siate at time ¢, follows from the
states at ¢, according to the transition rules of M. and Steps 2 and 3 confirm that state infor-

mation on separate tapes for the same machine at the same time is equal. Therefore,

5

ASIMD (§D) returns "true.”

Inductive hypothesis: AS/MD (3D) returns "true” if and only if valid (§D) is true.

Induction (j>1): Assume AS/IMD (3D) returns "true.” Let E. F. ... G be the subarravs

E of D from Step 4 of ASIMD. It follows that the calls to ASIMD (QE). ASIMD (§F). ...
P ASIMD(§G) returned "true." By the inductive hvpothesis. valid (§E). valid (§F).

valid (§G) are all true. Since array D is completely covered by the overlapping subarrays E.
’J F. G. and the states assigned Lo overlapping locations of E. F. G are the same since thev
s are passed 10 AS/MD (QE). ASIMD (§F), ..., ASIMD (3G) from ASIMD(JD). and there is a
5 consistent assignment of states to the entries of E. F, ... G, then there 15 a consistent assign-
t:r ment of states to the entries of D. Therefore, vaiid (3D) is true.
U’

. . R - - - - - ~ tm LN L b o S I T S N O S S
SRR e NS SO YT RPN ISL Y Y Sy ey .-I'".' P -;u e ‘".\!JJ L “"". SAR IR <. -\'.-_~'. ".‘\" IR L SRR RS
‘- '\."r,\‘.'}_ﬂ-‘ﬂﬁ-,.‘.ﬂ'{'A{Q‘.")tﬁ’:'fffr"a\ 'P\."nt*xﬁ'l‘?'t& RN VRN m”&;&ﬁﬂ\‘; ML S ARSARIEI RN PR) 3 A AP }",.:u

g
b 26
L
Ira
W Conversely, assume valid (3D) is true. It follows that valid (3E). valid (§F). ...
t’ i valid (3G) are all true. By the inductive hypothesis. AS/MD (QE). ASIMD (§F). ...
; ": ASIMD (§G) all return "rue.” Therefore, by Step 6 of ASIMD, ASIMD (§D) returns "true.”
",
Ly Now we show that if AM accepts. then M accepts. If AM accepts input string w, then
\ ASIMD (§C) returns "true.” and the state of M(0) at time T(n) determined by AS/IMD (§C)
is an accepting state. Since AS/MD(JC) returns “true.” valid (§C) is true. Because
e valid (3C) is true and the state of M(Q) at time T(n) determined by AS/MD(§C) is an
:r‘ accepling state, an assignment of states 1o all machines in M for all ¢, 0<¢ €7 (n). that ends
‘E:r, with M(Q) in an accepting state exists, such that the states of all machines at time ¢ result
r from the states of all machines at time ¢t —1 according to the transition rules of M and input
‘:t string w. This implies that M accepts w.
3\-‘\,: Next we show that if M accepts. then AM accepts. If M accepts input string w, then
oy there exisis an assignment of states 1o all machines in M for ail t. 05t <7 (n). such that the
:' states of all machines in M at time ¢ follow from the states of all machines at time 1 —1
:\':_2 according to the transition rules of M and the input string w. and such that all machiné are
T-'. . initially quiescent, and such that M(Q) is in an accepting state at time T(n). As a resuit.
K ‘:: valid (§C) is true: hence, ASIMD (§C) returns "true.” Because AS/MD (JC) returns "true.”
:?::: and M(0Q) is in an accepting state at time T(n). AM accepts w. r
t Now we show that the time required for this simulation is O ({7 (2))¥). Let D denote
E;_ a (d+1)-dimensional subarray of length & in each dimension. Let T,;,(k) denote the time
:. complexity of the simulation. AS/IMD (3D) is performed on computation arrav D which has
: sides of length & . Then AM selects one of the subarrays S of D and calls ASIMD (S). The
Egz lengths of the sides of S are k /2. x50 ASIMD(3S) requires time 7 ,y,(k /2). The time 10 per-
‘iés form Steps 2 and 3 of ASIMD (3D) is O (k). The iime complexity of ASIMD (§D) is
Ton (k) = Ty (ke 240 (k) = O (k"),
; %}: The space required for this simulation is O(k“) In parucular. the simulation of M by AM
“

T TN T T I IR TR TN TE ST ST oo e T

L 2 ati- A U o ¥l o e ks gl Ao el ped S sk B Deadi sade Sads meh v, Slaiaehe RCIARECSEC SRS = T i
T v T X

27

takes time T4y, (T(n)) = O ((T(n)») and space O ((T'(n)}). O

The same Lechniques can be used to simulate an NdIA on an ATM in the same time.

Corollary: For all T(n). every language recognized in time T'(n) by an NdIA can be

“recognized in time O ((T(n)}) by an ATM.

28

Chapter 5§

THE ATM SIMULATION OF THE ITA

This chapter contains a simulation of the ITA by the ATM and a proof of the correct-

ness of the simulation. It also outlines a simulation of an ATM by a dlA.

Theorem 7: For all T(n). every language recognized in time 7 (n) by an ITA can be recog-

nized in time O ((T(n))?) by an ATM.

Proof: Let R be an ITA of time complexity T(n). We design an ATM AM with four

worktapes that will simulate the operation of R. (Note: AM will existentially guess T(n).)

For B€{0.1]* and X €{0.1}. the local configuration of R(BX) at time t. denoted
LC(BX). is the quadruple (g, (¢).q; (¢).q, (¢).g, (¢)) where
g, (¢) is the state of R(B8X) at time t.
¢ (¢) is the state of R(B8X 0) at time t,
g, (¢) is the state of R(BX 1) at time ¢,
g, (¢) is the state of R(B) at time t if BX =\ or ¢, (¢) is the input symbol at time t i.f
BX =A.

Define | A | =0.

I.et A(B) denote the portion of R that comprises R (8) and all descendants of R (8). Let
03 denote the sequence of states ¢, (¢) of R(B) for 0X¢ €T (n). Define valid (o ;y .05.8X)
1o be a predicate that is true if and only if there is an assignment of states 10 MBX) for
every time ¢, 0S¢ €T (n). such that for every i . 0Si €T (n). the states of evervy machine in
A(BX) at time i follows from the states of every machine in A(8X) at time i —1 according
to the transition rules of R, o3y. and o;. Call such an assignment of states consistent. The

recursive procedure ASIMT. defined beiow. computes the predicate vaiid . that is. ASIMT

returns "true” or "faise.”

. Yy 3
- aa e - . . oy Pt " . arien S 4o
| prosausiauaaamain gea” yralisen s=at e g Balifad ot bt IeSulei et it At i it U e a4 < P A A

. 29 .
g '
) Initially. AM writes input string w onto tape 4, existentially inserting null symbols for

! the steps when M does ﬁov. read an input symbol. AM then existentially guesses the states

. for R(XA) at each time step from O to T(n). then calls ASIMT (o,.w .A). AM accepts if and ;
‘:’ ; only if

” (1) the output of ASIMT (a,.w A) is "true.” and ,
- (2) the state assigned 1o R (XA) at time T(n) by ASIMT (o,.w .A) is an accepting state.

_,5 The recursive procedure AS/IMT (0gy .0°3.8X) is defined below.

o Inputs: gy (the sequence of states ¢, (¢)) on tape 1. o (the sequence of states ¢, (¢)) ~'
" on tape 4. and 8X.

a Output: "true” or "false”
4 Step I: If 18X =T (n). then return "true” if all states of ¢, (¢) are quiescent: if not al} 1‘
©)

states are quiescent, then return "false.” If 18X | <7 (n). then perform the following.

Sl

Existentially guess gy on tape 2. [Lxistentially guess oy, on tape 3. (See Figure 5.1.)

Verify for each ¢, 0S¢ €T (n), that ¢, (¢) follows from LC (B.1 —1). defined on tapes 1-4,

P TP

}}» according to the transition rules of R. If any g, (¢) does not follow. then return "false.” Ver-

if y that the symbols generated for ¢, (¢) are equal to the symbols already on tape 4. If they
> are not. then return "false.” If no consistent sequence of guesses is possible. then return
::.: "false.”
- Step 2: Copy the contents of tape 1 onto tape 4.
g Step 3: Universally choose either R(B8X0)or R(B8X 1). If R(BX 0) is chosen, then copy :
:::: the contents of tape 2 onto tape 1. then call AS/MT (0zyv 0.0y BX0). If R(BX 1) is chosen.
= then copy the contents of tape 3 onto tape 1. then call ASIMT (agv .03y .BX 1).
y .
:_\1‘ Step 4: If both universal choices in Step 3 return "true.” then return "true"; >therwise .
«i return "false.” .
” ‘ ‘

" |

L

J A P " IS 0 N [t M PP R T o vi e (o Ty T e, T,
A3 A p A T T P P8 e, P AT h Tt {" (‘F.- Pt Ty $(.\'..“. \(-".q" WA AR E AL YO SN
7'\75"‘.5».'!?95‘. c&n“_h.»\ﬂ. J 3.’.\ ‘3“» " L “ d ."\.!,i‘\ "!”‘!'I » "‘ R S o ."'d. L X o B " ‘, y i # §. 004 P g P 1 " -,

Tape 1

Tape 2

Tape 3

Tape 4

Taxo

Osx1

Og

Figure 5.1 - Contents of ATM tapes in procedure ASIMT

e A N T

Y, Y T

¢
N
e

E S)
LA

!y
.

31

Now it will be shown that AM accepts if and only if R accepts.

We show by induction on A =T (n)=|BX |, that ASIMT (0, .03.8X) returns "true” if

and only if valid (ogy .05.8X) is true.

Basis (h=0): If AS/MT (ggy .03.8X). 18X |=T(n). returns "true.” then the sequence of
local configuraiions is consistent with all descendants of R(BX) according to the transition
rules of R, since all machines in A(8X) are in a quiescent state at all times and have no effect

on the computation. This implies that valid (agy .05.8X) is true.

Conversely, if valid (0g, .03.8X) is true, then a consistent assignment of states 10
A(BX) exists. According to the transition rules of R, all states assigned 10 A(BX) must be
quiescent. because all machines in A(BX) are below level T(n) in R. Therefore. Step 1 of
ASIMT (agy .03.8X) confirms that all states in Ogy are quiescent. Therefore,

ASIMT (a3 .03.8X) returns “true.”

Inductive hypothesis: AS/IMT (gzy 038X) returns “true” if and only if

valid (o5y .05.8X) is true.

Induction (h>0): Assume AS/MT (04 .05.8X) returns “true.” It follows that for some
COgyo and Oy the calls o ASIMT (0gy .05y .8X 0) and AS/MT (0px .03y .BX 1) returned
"true.” By the inductive hypothesis. valid (0py .0 55 83X 0) and valid (¢ ,.03y BX 1) are
both true. By Step 1 of AS/IMT (azy .03.8X). 05y is a sequence of states ¢, (¢) for R(8X).
such that ¢, (¢) follows from LC(BX £ —1) according to the iransition rules of R. Therefore.

4 consistent assignment of states to A(BX) exists. Therefore. verlid (0 3y .03.8X) is true.

Conversely. assume valid{03y.03.8X) is true. [t follows that both
valid (T 5+,,.04y BX0) and valid (O4y .05y .BX 1) are true. 3v the inductive hvpothesis,
poth ASIMT (0 35003y BX 0) and ASIMT (apy .0y BX 1) return "true.” Therefore. by Step

4 of ASIMT. ASIMT (0, .0,;.8X) returns "true.”

Now we show that if AM accepts. then R accepts. If AN accepts input string w. then

ASIMT (o, .w A1 has returned “true.” and the state assigned to R(A) at time T(n: by

VY

Lt Mt 2 on Sde Nom Mgl e it e et Saed Sols os i Mart eyt et Jhats Bat e b ek et it ok oV i Sl 4 il RS R S SR AR AN

M e T et et
[~

TSP L VR A R

. ... p.-\

s

PR A

b2

r

a
.

LA AFAL AR

v

.y
V) A
e
M

R I UM R e % 7
FAN AL SRS

T T i Tl A Zuil e 2t St APt et~ iangk st aseaCEbl Aied AN S MBS A e m o i A i M- A i S AN

32

ASIMT (o,.w A) is an accepting state.” Because AS/MT(o,.w.\) returns “true,
valid (o, .w A\) is true. Since valid (o,.w .A) 1s true. and since the state assigned to R(A) at

time T(n) is an accepting state. R accepts w.

Next we show that if R accepts. then AM accepts. If R accepts input siring w, then
there exisils an assignment of states to all machines in R for all ¢ . 05¢ €7 (n), such that the
states of all machines in R at time ¢ follow from the states of all machines at time ¢ —1
according to the transition rules of R and input string w. and such that all machines are ini-
tially quiescent. and such that R(X) is in an accepting state at time T(n). As a result.
valid (o, .w A) is true. Since valid (o,,w A) is true. AS/MT (o, .w .\) returns "true.” Because
ASIMT (o,.w A) returns “true.” and the state of R (A) at time T(n) is an accepting state. AM

accepts w.

Now we show that the time required for this simulation is O ((T(n))?). Let T4, (h)
denote the time complexity of ASIMT (sy.03.8X). where h =T (n)—18X |. Steps 2 and 3
of ASIMT(ozy.03.8X) require tlime O(T(n)). ASIMT(o3y.05.8X) calls
ASIMT (04yy .03 .B8XY). Y € {0.1}. which has a time complexity of Ty (h=—1).
T(0) =0(T(n)). These ierms give rise to Lthe recurrence

TA.\I (h)=T.~\AI (h=-1)+0 (T (n))

In particular, the simulation of T(n) steps of R by AM requires time

T a1 (T (a N)=T 40 (T (n)=1)+0 (T (n))=0 ((T (n))?).

This simulation requires space O (T (n)). O

In order to compleiz the cycle of simulations from [TA to dIA and from dIA to ITA,
only the simulation of an ATM by a dlA remains. In order o obtain a time bound on this
simulation, first consider a simulation of an NTM by a dlA. Suppose that a (deterministic)
dl.A operating in time O (¢4). where p is some constant, could simulate ¢ ; steps of an NTM.
Seiferas (1977a) proves that a DTM operating :n time O (:4~! ! can simulate : - steps of

dIA. Together. these two simulations would imply that a DTM could simulate an NTM in

2

-

O |

)
AL

e

[N

P
'
L,

)

v
./4

s

P ALY SV R S I

.s‘,i_q 5!- *' ¥

33

polynomial time; hence. the computational complexity class P would equal the computational
complexity class NP. The equaliy P = NP is widely believed to be unlikely; hence,a polyno-
mial time simulation of an NTM by a dlA is unlikely. Therefore, a polynomial time simula-

tion of an ATM by a dlA is unlikely. -

Proposition 8: For all T(n), every language recognized in time T(n) by an ATM can be recog-

nized in time O (27)) by a dIA.

Briefly. a (deterministic) dlA can simulate an ATM in exponential time as follows. The
dlA can simply compute each branch of the computation tree of the ATM in turn. Each
branch corresponds to the actions of a DTM., and a dIA is able to simulate a DTM in linear

time according to Seiferas (1977b).

Theorem 7 and Proposition 8 together yield an exponential time bound for a dIA simu-
lation of an ITA. One would expect this bound because the number of finite state machines
potentially involved in a computation grows polynomially with time for a dlA. but grows

exponentially with time for an ITA.

AN RIS S TS | =TS LG T LR A R I B Ty T L S R WAL S T Un s . '
v / o, -',..- "o Q'I \$!“ .‘. .«‘ -, 4‘-“\!'.. : *1-" ‘- ".-:‘ N "'.' .;1‘\ R -.", . e "C - o,
Vi ot 2004 W 2" LA PR e W ", , 2

e v N

S e AN L v e aiaa o e s s it et ot b s Bed Sav o Sas otk i ol e 8RS okt B v A A v B 4 BE A el Sl e tie 8 dn T Ain dna R R dala Sl Nl Sl Sl Salh, S

?-. < I. “:-‘. y

- e

Al Aok fhdh Ak |
o Te LT T S

R
LN

Bdnd B S Ao

ke k.

o g e
N 3

’

f

P

-
P

Py
N S d

v

e
pe-s e e)

o
h . X0
P A T e e

‘.' L '

P

[IS SR

N0

‘r-'

-

e s
F O N N G D)

> pors
".’.“...‘. .‘ "

i
b

TN a2
1t TN N N M D,

W - e J A B A g e~ Sttt B i R i e et e e sty bl o Cd .‘
1§ o i An ain i B 40 o N M4 N i S A i i e S S ST .. .

Chapter 6

CONCLUSIONS AND OPEN PROBLEMS

This thesis has presented three simulations and discussed a fourth. When combined.
Theorems 5 and 6 imply that an ITA can simulate a dIA in time O (¢), and Theorem 7 and

Proposition 8 imply that a dIA can simulate an ITA in exponential time.
These results and the work done in obtaining them suggest several open problems.
1. Can the time bounds of Theorems 5. 6. and 7 be improved?

2. Is there a language L such that some dIA recognizes L in linear time. but every ITA
requires superlinear lime to recognize L? Culik and Yu (1984) pose this question. but for
real-time. One candidate considered for L is a string of the form

L=(x #x.#. .#x, ##y #y.#. #v,).
where x,.¢5,....X,, is an unordered list of values, and y,;.y,.....v,, is a sorted list of the same
values. This candidate fails because an ITA can sort in time O(n) according to Browning
(1979). and. though a 2IA can sort in time 0 (Vn logn) according to Thompson and Kung
(1977). Nassimi and Sahni (1979). and Stout (1982), the diA must write down the output.
leading to a total time requirement of O(n). A second possible candidate is a language of

binary strings that represent connected d-dimensional figures.

3. How much time is required for an X-tree array to simulate an ATM? An X-treeisa
binary tree with additional edges connecting all nodes at the same level in the tree. An X-

lree array is an iterative array of finite state machines organized into an X-tree,
4. How much time is required for an ATM to simulate an X-tree array?

5. How can an ITA with depth as a function of the length of the input string simulate

an ATM or an NTM?

RIS

%

LVLPA

N T e T AR T N L e SO TIRTE I \ 139,09, 0% .4
rtf!”!' y '5‘ %' L -y .‘v "' ¥ l" '1)- l’ ' {‘ AU ‘l '*‘l‘*‘i"“'!‘qg"".‘.;‘.‘ ’ﬂf‘

bl
a

-
Pl M

-

7

-
'y
L

"o f’
e
r s

O

«

e

TR

" (iR

T,

= =R

:,'eﬁ

sl
L

| A

, 1':’:

io g Rttt Sl I G S R B
T R R T h W AR S ane aig aOl o8 il asd ava addawi ab aticand RAE e aNitall akasathad S g Al aaas Jhatogiat diah Sat aan int fat et et ant Sl - - v .

3s

6. How much time and space are required for an ATM with a limit on the number of

its alternations to simulate either the dIA or the ITA?

A further possible area for future research is the alternating iterative array, such as
either an alternating dIA or an alternating ITA. The addition of universal choices to non-
deterministic dIAs or ITAs adds a second kind of parallelism. Initial work could be done in

relating such a model 1o other models of computation.

- .

tal A AR IR

PRt
)

iy

Y
e 2 s M

Eas
PR

ot e 0 1

.
L A

- y g b R ik nitn aondt MR pnd gl Lt aedh a0l S0 el Ruf e mitln- uet e A s O A=t iy
2 S aeh el ans oo atiL e g s pa i B T

36
REFERENCES
S. A. Browning (1979). "Computations on a Tree of Processors.” Caltech Conference on VLS/,

pp- 453-478, January 1979.

A. K. Chandra. D. C. Kozen, and L. J. Stockmeyer (1981), "Alternation.” J. of the Association
for Computing Machinery, vol. 28, no. 1. pp. 114-133, January 1981.

A. K. Chandra and L. J. Stockmeyer (1976). "Alternation.” Proceedings of the 17th IEEE
Symposium on Foundations of Computer Science, pp. 98-108, October 1976.

S. N. Cole (1969). "Real-Time Computation by n-Dimensional Iterative Arrays of Finite-
State Machines.” IEEE Trans. Comput., vol. C-18. no. 4. pp. 349-365. April 1969.

K. Culik 1l and S. Yu (1984), “lierative Tree Automata.” Theoretical Computer Science. vol.
32. no. 3, pp. 227-247. August 1984.

P. W. Dymond and S. A. Cook (1980). "Hardware Complexity and Paralle] Computation.”
Proceedings of the 2lst IFFE Symposium on Foundations of Computer Science, pp.
360-372, October 1980.

P. W. Dymond and M. Tompa (1985). "Speedups of Deterministic Machines by Synchronous
Parallel Machines." J. of Computer and System Sciences, vol. 30. no. 2, pp. 149-161.
April 1985. :

S. Fortune and J. Wyllie (1978), "Parallelism in Random Access Machines.” Proceedirgs of
the Tenth Annual ACM Symposium on Theory of Computing, pp. 114-118, May 1978.

J. E. Hoperoft and J. D. Ullman (1979), [ntroduction to Automata Theory. Languages. and
Computation, Reading, MA: Addison-wesley. 1979.

D. Kozen (1976), "On Parallelism in Turing Machines.” Proceedings of the 17th IEEE Sympo-
sium on Foundations of Computer Science, pp. 89-97. October 1976.

M. C. Loui (1981). "A Space Bound for One-Tape Muitidimensional Turing Machines (Notz).”
Theoretical Computer Science, vol. 15, no. 3. pp. 311-320, September 1981.

D. Nassimi and S. Sahni (1979), "Bitonic Sort on a Mesh-Connected Parallel Computer.' JEEE
Trans. Comput., vol. C-27. no. 1, January 1979.

M. §. Paterson (1972). "Tape Bounds for Time-Bounded Turing Machines." J. of Comguter
and Svstem Sciences, vol. 6. no. 2, pp. 116-124, April 1972.

W. J. Paul. W._ J. Prauss. and R. Reischuk (1980), "On Alternation." Acta Informaticc. ol.
14. no. 3, pp. 243-255. September 1980.

A. Rosenfeld (1979), Picture Languages. New York. NY: Academic Press. 1979.

W. J. Savitch (1970), "Relationships Between Nondeterministic and Deterministic Tape Comn-
piexities," J. of Computer and Svsiem Sciences. vol. 4. no. 2. pp. 177-192, April 1970,

J. I Seiferas (1977a). "Linear-Time Computation by Nondeterministic Multidimensional

| 3

,..,
A
aLs .8

¥ N
< .

)

R 1

..
L
LI N

N |

3
N

‘. \‘- S xul.»nLL xtu._ ‘.‘}?;\?1:}.;;\ ’\“L}}\\ \i";s._ﬂ

ﬁfg‘ﬁ 'A".A.;) ‘4

. e n ok g g

‘a4 8
b/’)

.
3
:

b%

Py

37

lierative Arrays.” SIAM J. Comput., vol. 6, no. 3. pp. 487-504. September 1977.

J. 1. Seiferas (1977b). "Iterative Arrays with Direct Central Control.” Acta Informatica. vol.
8. no. 2, pp. 177-192. 1977.

Q. F. Swout (1982), "Using Clerks in Parallel Processing.” Proceedings of the 23rd IEEE Sym-
posium on Foundations of Computer Science, pp. 272-279. November 1982.

C. D. Thompson and H. T. Kung (1977). “Sorting on a Mesh-Connected Parallel Computer.”
Communications of the ACM, vol. 20, no. 4. pp. 263-271. April 1977.

- T T W o g
TN T T a0 oot -t 0 aed gt et B A et il el Agh mob bt N R AN AT Bl T T Y T L.

i A A T A T AT AW e Sl e .rmrﬁ

END

FILMED

- 1-86

DTIC

- . s, -

A a PR .
tis, .,

. B o
SR SN U N 3

“‘-. -t
SRR T b W 1 A e,
< ,K"i(n('-“.“ PN Ot AR \

.

